
NetworkX Quick Reference

More detailed documentation and listing of options and defaults can be found in the
html documentation or by using pydoc (or interactive help) on a function, method or
class. For example, for methods of the Graph class such as add node, use

pydoc networkx.Graph.add_node

or

pydoc networkx.Graph

to report all Graph methods.
For functions associated with multiple graph classes, such as subgraph or watts strogatz graph,

use

pydoc networkx.subgraph

or

pydoc networkx.watts_strogatz_graph

Terminology

Graph or network structure is encoded in the edges (connections, links, ties, arcs, bonds)
between nodes (vertices, sites, actors).

nlist - a list of nodes.
nbunch - a bunch of nodes:

any iterable container of nodes.
e=(u,v) - a Graph or DiGraph edge as a Python tuple (also written u-v or u->v).
e=(u,v,x) - an XGraph or XGraph edge as a Python tuple, x is an arbitrary object.
elist - a list of edges.
ebunch - a bunch of edges:

any iterable container of edge-tuples.

Creation

G=Graph() - create empty simple graph G.
G=DiGraph() - create empty simple directed graph G.
G=XGraph() - create empty graph G with edge data.
G=XDiGraph() - create empty directed graph G with edge data.
G=empty_graph(n) - create empty graph with n nodes.
G=empty_graph(n,create_using=DiGraph()) - create empty digraph with n nodes.
G=create_empty_copy(H) - create new, empty graph of same class as H.

1

https://networkx.lanl.gov/Reference/

Manipulation

Methods associated with a graph-like object G:

G.add_node(n) - add single node to G.
G.add_nodes_from(nbunch) - add each node in nbunch to G.
G.delete_node(n) - delete node n from G.
G.delete_nodes_from(nbunch) - delete each node n in nbunch.
G.add_edge(u,v) - add edge (u,v) to G.

if G is a digraph, add directed edge u->v.
G.add_edge(e) - add edge e=(u,v) *(equivalent to above)*
G.add_edges_from(ebunch) - add each edge e in ebunch to G.
G.delete_edge(u,v) - delete edge (u,v)
G.delete_edge(e) - delete edge e=(u,v)
G.delete_edges_from(ebunch) - delete each edge in ebunch from G.

G.add_path(nlist) - add nodes and edges to make ordered path.
G.add_cycle(nlist) - same as add_path, but end nodes are

connected.
G.clear() - delete all nodes and edges.
G.copy() - return "shallow" copy of the graph

(like dict.copy())
G.subgraph(nbunch) - return subgraph induced by nodes in nbunch.

New graphs from old

subgraph(G, nbunch) - subgraph induced by nodes in nbunch.
union(G1,G2) - graph union.
disjoint_union(G1,G2) - graph union, assuming all nodes are different.
cartesian_product(G1,G2) - Cartesian product graph.
compose(G1,G2) - combine graphs, identifying nodes with same names.
complement(G) - return graph complement.
create_empty_copy(G) - empty copy of the same graph class.
convert_to_undirected(G) - return an undirected copy of G.
convert_to_directed(G) - return a directed copy of G.
convert_node_labels_to_integers(G) - return copy with nodes relabed as integers.

Graph Properties

Methods:

G.order() - number of nodes in G.
G.size() - number of edges in G.

2

G.nodes() - return copy of all nodes of G in a list.
G.nodes_iter() - return iterator over all nodes in G.
G.has_node(n) - True if n is a node in G.
n in G - equivalent to G.has_node(n)
G.edges() - return list of all edges in G.
G.edges(nbunch) - return list of edges adjacent to some node in nbunch.
G.edges_iter() - return iterator over all edges in G.
G.edges_iter(nbunch) - return iterator that iterate once over

each edge adjacent to some node in nbunch.
G.has_edge(u,v) - True if (u,v) is an edge in G.
G.edge_boundary(nb1) - return a list of edges outward from nb1.
G.edge_boundary(nb1,nb2) - return a list of edges between nb1 and nb2.

G.neighbors(n) - return list of nodes connected to node n (outgoing if directed).
G[n] - equivalent to G.neighbors(n).
G.neighbors_iter(n) - return iterator over the neighbors of node n.
G.has_neighbor(v,u) - check if u is a neighbor of v (returns True or False).
G.node_boundary(nb1) - return list of nodes outside but connected to nb1.
G.node_boundary(nb1,nb2) - return list of nodes in nb2 connected to nb1.

G.degree(n) - return degree of node n.
G.degree() - return list of degrees of all nodes in G.
G.degree(with_labels=True) - return dict mapping each node in G to

its degree.
G.degree(nbunch) - return list of degrees of all nodes in nbunch.
G.degree(nbunch,with_labels=True) - return dict mapping each n in nbunch to degree(n)

Directed Graphs Only

G.out_edges() - like edges, but only outward pointing edges.
G.in_edges() - like edges, but only inward pointing edges.
G.in_degree() - like degree, but only inward edges count.
G.out_degree() - like degree, but only outward edges count.
G.predecessors() - like neighbors, but only inward edges count.
G.successors() - like neighbors, but only outward edges count.
G.predecessors_iter() - like neighbors_iter, but only inward edges count.
G.successors_iter() - like neighbors_iter, but only outward edges count.

Functions

number_of_nodes(G) - number of nodes in G.
order(G) - equivalent to above.
number_of_edges(G) - number of edges in G.

3

size(G) - equivalent to above.
density(G) - fraction of possible edges which exist.

nodes(G) - return copy of all nodes of G in a list.
nodes_iter(G) - return iterator over all nodes in G.
edges(G) - return list of all edges in G.
edges_iter(G) - return iterator over all edges in G.

diameter(G) - return maximum of all-pairs shortest path.
periphery(G) - return list of nodes with eccentricity equal to diameter.
radius(G) - return minimum of all-pairs shortest path.
center(G) - return list of nodes with eccentricity equal to radius.

is_directed(G) - True if G is a directed graph.
is_connected(G) - True if G is a connected graph.
number_connected_components(G) - number of connected components in G.
connected_components(G) - list of lists of nodes in each component of G.
average_clustering(G) - clustering coefficient averaged over nodes of G.
transitivity(G) - fraction of transitive triples that are triangles.
communities(G) - list of lists storing binary-tree community dendrogram.
kl_connected_subgraph(G) - subgraph of G that is kl-connected.
is_kl_connected(G) - True if G is kl-connected.

adj_matrix(G) - adjacency matrix for G as a numpy matrix.
laplacian(G) - Graph Laplacian for G as a numpy matrix
generalized_laplacian(G) - generalized graph Laplacian for G as a numpy matrix.

is_directed_acyclic_graph(G) - True if DAG.
topological_sort(G) - list of nodes in directed graph such that every edge goes from left to right.

Nodal Properties

If n is unspecified, then report properties of all nodes in graph.

neighbors(G,n) - neighbors (outgoing if directed) of n in G.
G[n] - same as above.
degree(G,n) - number of edges for n in G.
eccentricity(G,n) - maximum of shortest-path lengths from n to anywhere in G.
triangles(G,n) - number of triangles which include n.
clustering(G,n) - clustering coefficient: ratio of triangles to potential.
node_betweenness(G,n) - number of shortest paths through n.
betweenness_centrality(G,n) - fraction of shortest paths that go through n.
degree_centrality(G,n) - frction of possible nodes connected to n.

4

closeness_centrality(G,n) - 1/(average distance to all nodes from n).

shortest_path(G,u,v) - list denoting the shortest path from u to v.
shortest_path_length(G,u,v) - length of the shortest path from u to v.
node_connected_component(G,n) - list of nodes in node n’s connected component.
dijkstra(G,u) - dicts for shortest weighted paths and path length from u.
dijkstra_shortest_path(G,u) - dict of paths from u keyed by target node.
dijkstra_path_length(G,u) - dict of path lengths from u keyed by target node.

Generating Graphs

Variable size graphs

make_small_graph(graph_description,create_using=None,**kwds)
LCF_graph(n, shift_list, repeats)

balanced_tree(r, h)
barbell_graph(m1, m2)
complete_graph(n)
complete_bipartite_graph(n1, n2)
circular_ladder_graph(n)
cycle_graph(n)
empty_graph(n, create_using=None, **kwds)
grid_graph([m1,m2,...,mk])
grid_2d_graph(m, n)
hypercube_graph(n)
ladder_graph(n)
lollipop_graph(m, n)
null_graph(create_using=None, **kwds)
path_graph(n)
periodic_grid_2d_graph(m, n)
star_graph(n)
wheel_graph(n)

Small, named graphs of fixed size

bull_graph(), chvatal_graph(), cubical_graph(), desargues_graph(),
diamond_graph(), dodecahedral_graph(), frucht_graph(),
heawood_graph(), house_graph(), house_x_graph(),
icosahedral_graph(), krackhardt_kite_graph(),
moebius_kantor_graph(), octahedral_graph(), pappus_graph(),
petersen_graph(), sedgewick_maze_graph(), tetrahedral_graph(), trivial_graph()
truncated_cube_graph(), truncated_tetrahedron_graph(), tutte_graph()

5

Random graphs

barabasi_albert_graph(n, m, seed=None)
binomial_graph(n, p, seed=None)
erdos_renyi_graph(n, p, seed=None)
gnm_random_graph(n, m, seed=None)
gnp_random_graph(n, p, seed=None)
powerlaw_cluster_graph(n, m, p, seed=None)
random_regular_graph(d, n, seed=None)
random_lobster(n, p1, p2, seed=None)
watts_strogatz_graph(n, k, p, seed=None)

Graphs from degree sequences

configuration_model(deg_sequence, seed=None)
havel_hakimi_graph(deg_sequence, seed=None)
is_valid_degree_sequence(deg_sequence)
create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)
pareto_sequence(n, exponent=1.0) - return a sequence with pareto distribution of length n.
powerlaw_sequence(n, exponent=2.0) - return a sequence with powerlaw distribution of length n.
uniform_sequence(n) - return a sequence with uniform distribution of length n.
discrete_sequence(n, distribution) - return a sequence with distribution matching given distribution.

IO

read_adjlist(path, comments=’#’, delimiter=’ ’, create_using=None, nodetype=None)
write_adjlist(G, path, comments=’#’, delimiter=’ ’)
read_edgelist(path, comments="#", delimiter=’ ’, create_using=None, nodetype=None, edgetype=None)
write_edgelist(G, path, comments="#", delimiter=’ ’)
read_multiline_adjlist(path, comments=’#’, delimiter=’ ’, create_using=None, nodetype=None, edgetype=None)
write_multiline_adjlist(G, path, comments=’#’, delimiter=’ ’)
read_gpickle(path)
write_gpickle(G, path)
read_yaml(path)
write_yaml(G, path, default_flow_style=False)

6

	NetworkX Quick Reference
	Terminology
	Creation
	Manipulation
	Methods associated with a graph-like object G:

	New graphs from old
	Graph Properties
	Methods:
	Directed Graphs Only
	Functions
	Nodal Properties

	Generating Graphs
	Variable size graphs
	Small, named graphs of fixed size
	Random graphs
	Graphs from degree sequences

	IO

